tragen; wie aus der ersten Aufgabe (§. 43.) abzunehmen.
Im ersten und dritten Falle ist kein Beweis nöthig. Im andern Falle ist der Bogen gh = GH, wie unten (§. 92.) ohne gegenwärtigen Satz soll erwiesen werden, und also der Winkel def = DEF (§. 16. 35.). W. Z. E.
49. Wenn in zweyen Triangeln ABC und abc[Fig. 30] der Winkel A = a, AC = ac und AB = ab; so sind die ganzen Triangel einander gleich, und BC = bc, B = b, C = c.
Man gedenke, es würde der Triangel acb dergestalt auf den andern ACB geleget, daß der Punct a auf A, und die Linie ab auf die Linie AB fället. Weil nun ab = AB, so fället die Linie ac auf AC (§. 30.): weil a = A, so fället der Punct b auf B (§. 30.), und, da ac = AC, der Punct c auf C (§. cit.): folgends die Linie bc auf BC (§. 24.). Derowegen sind die Triangel ABC und abc einander gleich (§. 31.), und BC = bc etc. (§. 30.). W. Z. E.
50. Wenn in zweyen Triangeln ABC und abc[Fig. 30] der Winkel A = a und B = b, über dieses die Seite AB = ab; so sind die ganzen Triangel einander gleich, und AC = ac, BC = bc, C = c.
Christian Wolff: Auszug aus den Anfangs-Gründen aller Mathematischen Wissenschaften. Rengerische Buchhandlung, Halle 1772, Seite 79. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:Anfangsgr%C3%BCnde_der_Mathematik_I_079.jpg&oldid=- (Version vom 31.7.2018)