Winkel in C durchschneiden und den verlangten Triangel ABC auf der Linie AB formiren (§. 50.).
61. Die Weite zweyer Oerter A und B zu messen, zu deren jedem man aus einem in C angenommenen Stande kommen kan.[Fig. 36]
1. Stecket in C einen Stab nach Belieben ein.
2. Messet die Linie AC (§. 44.), und traget sie zurücke in a, dergestalt, daß in a ein Stab mit dem Stabe C und dem Orte A in eine gerade Linie gesetzet wird (§. 8.).
3. Auf gleiche Weise messet die Linie BC, traget sie zurück in b, und stecket in b wie vorhin einen Stab mit C und B in einer geraden Linie ein (§. 8.).
4. Endlich messet die Linie ab; so habet ihr die verlangte Weite.
Denn die Winkel x und y sind einander gleich (§. 40.). Da nun auch AC = aC und BC = bC, so ist ab = AB (§. 49.). W. Z. E.
62. Wenn man nicht Raum hat, die ganzen Linien AC und BC zurücke zu tragen; so träget man nur ihre Hälften, oder den dritten, oder auch den vierten Theil derselben zurücke: Alsdann ist ab = , oder oder AB, wie unten wird erwiesen werden (§. 152.).
Christian Wolff: Auszug aus den Anfangs-Gründen aller Mathematischen Wissenschaften. Rengerische Buchhandlung, Halle 1772, Seite 84. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:Anfangsgr%C3%BCnde_der_Mathematik_I_084.jpg&oldid=- (Version vom 31.7.2018)